Skip to main content

Advertisement

Log in

Modern modes of provenance and dispersal of terrigenous sediments in the North Pacific and Bering Sea: implications and perspectives for palaeoenvironmental reconstructions

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

During expedition 202 aboard the RV Sonne in 2009, 39 seafloor surface sediment sites were sampled over a wide sector of the North Pacific and adjoining Bering Sea. The data served to infer land–ocean linkages of terrigenous sediment supply in terms of major sources and modes of sediment transport within an over-regional context. This is based on an integrated approach dealing with grain-size analysis, bulk mineralogy and clay mineralogy in combination with statistical data evaluation (end-member modelling of grain-size data, fuzzy cluster analysis of mineralogical data). The findings on clay mineralogy served to update those of earlier work extracted from the literature. Today, two processes of terrigenous sediment supply prevail in the study area: far-distance aeolian sediment supply to the pelagic North Pacific, and hemipelagic sediment dispersal from nearby land sources via ocean currents along the continental margins and island arcs. Aeolian particles show the finest grain sizes (clay and fine silt), whereas hemipelagic sediments have high abundances of coarse silt. Exposed sites on seamounts and the continental slope are partly swept by strong currents, leading to residual enrichment of fine sand. Four sediment sources can be distinguished on the basis of distinct index minerals revealed by statistical data analysis: dust plumes from central Asia (quartz, illite), altered materials from the volcanic regions of Kamchatka and the Aleutian Arc (smectite), detritus from the Alaskan Cordillera (chlorite, hornblende), and fluvial detritus from far-eastern Siberia and the Alaska mainland (quartz, feldspar, illite). These findings confirm those of former studies but considerably expand the geographic range of this suite of proxies as far south as 39°N in the open North Pacific. The present integrated methodological approach proved useful in identifying the major modern processes of terrigenous sediment supply to the study region. This aspect deserves attention in the selection of sediment core sites for future palaeoenvironmental reconstructions related to aeolian and glacial dynamics, as well as the recognition of palaeo-ocean circulation patterns in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman & Hall, New York

    Book  Google Scholar 

  • Asahara Y (1999) 87 Sr/86 Sr variation in North Pacific sediments: a record of the Milankovitch cycle in the past 3 million years. Earth Planet Sci Lett 171:453–464. doi:10.1016/S0012-821X(99)00158-2

    Article  Google Scholar 

  • Asahara Y, Takeuchi F, Nagashima K, Harada N, Yamamoto K, Oguri K, Tadai O (2012) Provenance of terrigenous detritus of the surface sediments in the Bering and Chukchi Seas as derived from Sr and Nd isotopes: implications for recent climate change in the Arctic regions. Deep-Sea Res II Top Stud Oceanogr 61:155–171. doi:10.1016/j.dsr2.2011.12.004

    Article  Google Scholar 

  • Asikainen CA, Francus P, Brigham-Grette J (2006) Sedimentology, clay mineralogy and grain-size as indicators of 65 ka of climate change from El’gygytgyn Crater Lake, Northeastern Siberia. J Paleolimnol 37:105–122. doi:10.1007/s10933-006-9026-5

    Article  Google Scholar 

  • Aydin M, Top Z, Olson DB (2004) Exchange processes and watermass modifications along the subarctic front in the North Pacific: oxygen consumption rates and net carbon flux. J Mar Res 62:153–167. doi:10.1357/002224004774201672

    Article  Google Scholar 

  • Bao K, Xing W, Yu X, Zhao H, McLaughlin N, Lu X, Wang G (2012) Recent atmospheric dust deposition in an ombrotrophic peat bog in Great Hinggan Mountain, Northeast China. Sci Total Environ 431:33–45. doi:10.1016/j.scitotenv.2012.05.014

    Article  Google Scholar 

  • Beikman HM, Schumacher G (1980) Geologic map of Alaska. Geological Society of America

  • Bezdek JC, Coray C, Gunderson R, Watson J (1981) Detection and characterization of cluster substructure I. Linear structure: fuzzy c-lines. SIAM J Appl Math 40:339–357. doi:10.1137/0140029

    Article  Google Scholar 

  • Biscaye PE (1965) Mineralogy and sedimentation of Recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76:803–832. doi:10.1130/0016-7606(1965)76[803:masord]2.0.co;2

    Article  Google Scholar 

  • Blank M, Leinen M, Prospero JM (1985) Major Asian aeolian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific. Nature 314:84–86. doi:10.1038/314084a0

    Article  Google Scholar 

  • Borchers A, Dietze E, Kuhn G, Esper O, Voigt I, Hartmann K, Diekmann B (2015) Holocene ice dynamics and bottom-water formation associated with Cape Darnley polynya activity recorded in Burton Basin, East Antarctica. Mar Geophys Res. doi:10.1007/s11001-015-9254-z

    Google Scholar 

  • Chauhan T, Noormets R, Rasmussen TL (2016) Glaciomarine sedimentation and bottom current activity on the north-western and northern continental margins of Svalbard during the late Quaternary. Geo-Mar Lett 36(2):1–19. doi:10.1007/s00367-015-0430-6

  • Danielson S, Curchitser E, Hedstrom K, Weingartner T, Stabeno P (2011) On ocean and sea ice modes of variability in the Bering Sea. J Geophys Res 116, C12034. doi:10.1029/2011JC007389

    Article  Google Scholar 

  • Diekmann B (2007) Sedimentary patterns in the late Quaternary Southern Ocean. Deep-Sea Res II Top Stud Oceanogr 54:2350–2366. doi:10.1016/j.dsr2.2007.07.025

    Article  Google Scholar 

  • Diekmann B, Kuhn G (1999) Provenance and dispersal of glacial–marine surface sediments in the Weddell Sea and adjoining areas, Antarctica: ice-rafting versus current transport. Mar Geol 158:209–231. doi:10.1016/s0025-3227(98)00165-0

    Article  Google Scholar 

  • Diekmann B, Hofmann J, Henrich R, Fütterer DK, Röhl U, Wei K-Y (2008) Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary. Mar Geol 255:83–95. doi:10.1016/j.margeo.2008.08.001

    Article  Google Scholar 

  • Dietze E, Hartmann K, Diekmann B, IJmker J, Lehmkuhl F, Opitz S, Stauch G, Wünnemann B, Borchers A (2012) An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sediment Geol 243–244:169–180. doi:10.1016/j.sedgeo.2011.09.014

    Article  Google Scholar 

  • Dodimead A, Favorite F, Hirano T (1963) Salmon of the North Pacific Ocean, II. Review of oceanography of the Subarctic Pacific region. In: Int North Pac Fish Comm Bull, pp 1–195

  • Duprat LPAM, Bigg GR, Wilton DJ (2016) Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs. Nat Geosci. doi:10.1038/ngeo2633

    Google Scholar 

  • Ehrmann WU, Melles M, Kuhn G, Grobe H (1992) Significance of clay mineral assemblages in the Antarctic Ocean. Mar Geol 107:249–273. doi:10.1016/0025-3227(92)90075-S

    Article  Google Scholar 

  • Esquevin J (1969) Influence de la composition chimique des illites sur leur cristallinité. Bull Centre Rech Pau-SNPA 3:147–153

    Google Scholar 

  • Ewing M, Connary SD (1970) Nepheloid layer in the North Pacific. Geol Soc Am Mem 126:41–82. doi:10.1130/mem126-p41

    Article  Google Scholar 

  • Gardner J, Dean W, Vallier T (1980) Sedimentology and geochemistry of surface sediments, outer continental shelf, southern Bering Sea. Mar Geol 35:299–329. doi:10.1016/0025-3227(80)90123-1

    Article  Google Scholar 

  • Gergen LD, Ingersoll RV (1986) Petrology and provenance of Deep Sea Drilling Project sand and sandstone from the North Pacific Ocean and the Bering Sea. Sediment Geol 51:29–56. doi:10.1016/0037-0738(86)90023-0

    Article  Google Scholar 

  • Gersonde R (2012) The expedition of the research vessel “Sonne” to the subpolar North Pacific and the Bering Sea in 2009 (SO202-INOPEX). Berichte zur Polar- und Meeresforschung (Reports on Polar and Marine Research), Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, no 643

  • Griffin JJ, Windom H, Goldberg ED (1968) The distribution of clay minerals in the world ocean. Deep-Sea Res Oceanogr Abstr 15:433–459. doi:10.1016/0011-7471(68)90051-X

    Article  Google Scholar 

  • Hathon EG, Underwood MB (1991) Clay mineralogy and chemistry as indicators of hemipelagic sediment dispersal south of the Aleutian arc. Mar Geol 97:145–166. doi:10.1016/0025-3227(91)90024-X

    Article  Google Scholar 

  • Heath GR, Pisias NG (1979) A method for the quantitative estimation of clay minerals in North Pacific deep-sea sediments. Clays Clay Miner 27:175–184. doi:10.1346/ccmn.1979.0270302

    Article  Google Scholar 

  • Hyeong K, Park SH, Yoo CM, Kim KH (2005) Mineralogical and geochemical compositions of the eolian dust from the northeast equatorial Pacific and their implications on paleolocation of the Intertropical Convergence Zone. Paleoceanography 20, PA1010. doi:10.1029/2004PA001053

    Article  Google Scholar 

  • Janecek TR, Rea DK (1983) Eolian deposition in the northeast Pacific Ocean: cenozoic history of atmospheric circulation. Geol Soc Am Bull 94:730–738. doi:10.1130/0016-7606(1983)94<730:editnp>2.0.co;2

    Article  Google Scholar 

  • Jickells T, An Z, Andersen KK, Baker A, Bergametti G, Brooks N, Cao J, Boyd P, Duce R, Hunter K (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71. doi:10.1126/science.1105959

    Article  Google Scholar 

  • Kaufman D, Manley W (2004) Pleistocene maximum and Late Wisconsinan glacier extents across Alaska, USA. In: Quaternary glaciations—extent and chronology, Part II: North America. Developments in Quaternary Science. Elsevier, Amsterdam, pp 431–440

  • Kuehn H, Lembke-Jene L, Gersonde R, Esper O, Lamy F, Arz H, Tiedemann R (2014) Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation. Clim Past Discuss 10:2467–2518. doi:10.5194/cpd-10-2467-2014

    Article  Google Scholar 

  • Kuhn G, Diekmann B (2002) Late Quaternary variability of ocean circulation in the southeastern South Atlantic inferred from the terrigenous sediment record of a drift deposit in the southern Cape Basin (ODP Site 1089). Palaeogeogr Palaeoclimatol Palaeoecol 182:287–303. doi:10.1016/s0031-0182(01)00500-4

    Article  Google Scholar 

  • Kumar N, Anderson R, Mortlock R, Froelich P, Kubik P, Dittrich-Hannen B, Suter M (1995) Increased biological productivity and export production in the glacial Southern Ocean. Nature 378:675–680. doi:10.1038/378675a0

    Article  Google Scholar 

  • Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, Kubilay N, Prospero JM, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Glob Biogeochem Cycles 19, GB4025. doi:10.1029/2004GB002402

    Google Scholar 

  • Maier E, Méheust M, Abelmann A, Gersonde R, Chapligin B, Ren J, Stein R, Meyer H, Tiedemann R (2015) Deglacial subarctic Pacific surface water hydrography and nutrient dynamics and links to North Atlantic climate variability and atmospheric CO2. Paleoceanography 30:949–968. doi:10.1002/2014PA002763

    Article  Google Scholar 

  • McCave I (1986) Local and global aspects of the bottom nepheloid layers in the world ocean. Neth J Sea Res 20:167–181. doi:10.1016/0077-7579(86)90040-2

    Article  Google Scholar 

  • Mcmanus DA, Venkatarathnam K, Hopkins DM, Nelson CH (1974) Yukon River sediment on the northernmost Bering Sea shelf. J Sediment Res 44:1052–1060. doi:10.1306/212f6c2b-2b24-11d7-8648000102c1865d

    Google Scholar 

  • Méheust M, Fahl K, Stein R (2013) Variability in modern sea surface temperature, sea ice and terrigenous input in the sub-polar North Pacific and Bering Sea: reconstruction from biomarker data. Org Geochem 57:54–64. doi:10.1016/j.orggeochem.2013.01.008

    Article  Google Scholar 

  • Méheust M, Stein R, Fahl K, Max L, Riethdorf J-R (2016) High-resolution IP25-based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18,000 years. Geo-Mar Lett 36(2):1–11. doi:10.1007/s00367-015-0432-4

  • Milligan GW, Cooper MC (1988) A study of standardization of variables in cluster analysis. J Classif 5:181–204. doi:10.1007/BF01897163

    Article  Google Scholar 

  • Moore DM, Reynolds RC (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford

    Google Scholar 

  • Morley JJ, Pisias NG, Leinen M (1987) Late Pleistocene time series of atmospheric and oceanic variables recorded in sediments from the subarctic Pacific. Paleoceanography 2:49–62. doi:10.1016/0198-0254(87)90201-9

    Article  Google Scholar 

  • Naidu AS, Mowatt TC (1983) Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska. Geol Soc Am Bull 94:841–854. doi:10.1130/0016-7606(1983)94<841:sadpoc>2.0.co;2

    Article  Google Scholar 

  • Naidu A, Creager J, Mowatt T (1982) Clay mineral dispersal patterns in the north Bering and Chukchi Seas. Mar Geol 47:1–15. doi:10.1016/0025-3227(82)90016-0

    Article  Google Scholar 

  • Naidu AS, Han MW, Mowatt TC, Wajda W (1995) Clay minerals as indicators of sources of terrigenous sediments, their transportation and deposition: Bering Basin, Russian-Alaskan Arctic. Mar Geol 127:87–104. doi:10.1016/0025-3227(95)00053-2

    Article  Google Scholar 

  • Nakai S, Halliday AN, Rea DK (1993) Provenance of dust in the Pacific Ocean. Earth Planet Sci Lett 119:143–157. doi:10.1016/0012-821X(93)90012-X

    Article  Google Scholar 

  • Nechaev VP, Sorochinskaya AV, Tsoy IB, Gorbarenko SA (1994) Clastic components in Quaternary sediments of the northwest Pacific and their paleo-oceanic significance. Mar Geol 118:119–137. doi:10.1016/0025-3227(94)90116-3

    Article  Google Scholar 

  • Niebauer HJ (1980) Sea ice and temperature variability in the eastern Bering Sea and the relation to atmospheric fluctuations. J Geophys Res 85:7507–7515. doi:10.1029/JC085iC12p07507

    Article  Google Scholar 

  • Niebauer HJ (1983) Multiyear sea ice variability in the eastern Bering Sea: an update. J Geophys Res 88:2733–2742. doi:10.1029/JC088iC05p02733

    Article  Google Scholar 

  • Ohtani K, Akiba Y, Takenouti AY (1972) Formation of western subarctic water in the Bering Sea. In: Takenouti AY (ed) Biological oceanography of the northern North Pacific Ocean. Idemitsu Shoten, Tokyo

    Google Scholar 

  • Olivarez AM, Owen RM, Rea DK (1991) Geochemistry of eolian dust in Pacific pelagic sediments: implications for paleoclimatic interpretations. Geochim Cosmochim Acta 55:2147–2158. doi:10.1016/0016-7037(91)90093-k

    Article  Google Scholar 

  • Opitz S, Wünnemann B, Aichner B, Dietze E, Hartmann K, Herzschuh U, IJmker J, Lehmkuhl F, Li S, Mischke S (2012) Late Glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological analysis. Palaeogeogr Palaeoclimatol Palaeoecol 337:159–176. doi:10.1016/j.quaint.2012.08.1837

    Article  Google Scholar 

  • Overland JE (1981) Marine climatology of the Bering Sea. The eastern Bering Sea shelf: Oceanography and resources 1:15–22. doi:10.5962/bhl.title.61718

  • Overland JE, Adams JM, Bond NA (1999) Decadal variability of the Aleutian Low and its relation to high-latitude circulation. J Clim 12:1542–1548. doi:10.1175/1520-0442(1999)012<1542:DVOTAL>2.0.CO;2

    Article  Google Scholar 

  • Petschick R, Kuhn G, Gingele F (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Mar Geol 130:203–229. doi:10.1016/0025-3227(95)00148-4

    Article  Google Scholar 

  • Pettke T, Halliday AN, Hall CM, Rea DK (2000) Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr. Earth Planet Sci Lett 178:397–413. doi:10.1016/S0012-821X(00)00083-2

    Article  Google Scholar 

  • Plafker G, Berg HC (1994) The geology of Alaska. Geological Society of America, Boulder

    Book  Google Scholar 

  • Qiu B (2002) Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: observations and causes. J Phys Oceanogr 32:353–375. doi:10.1175/1520-0485(2002)032<0353:LSVITM>2.0.CO;2

    Article  Google Scholar 

  • Rateev M, Gorbunova Z, Lisitzyn A, Nosov G (1969) The distribution of clay minerals in the oceans. Sedimentology 13:21–43. doi:10.1111/j.1365-3091.1969.tb01119.x

    Article  Google Scholar 

  • Rea DK, Hovan SA (1995) Grain size distribution and depositional processes of the mineral component of abyssal sediments: lessons from the North Pacific. Paleoceanography 10:251–258. doi:10.1029/94PA03355

    Article  Google Scholar 

  • Rea DK, Leinen M (1988) Asian aridity and the zonal westerlies: Late Pleistocene and Holocene record of eolian deposition in the northwest Pacific Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 66:1–8. doi:10.1016/0031-0182(88)90076-4

    Article  Google Scholar 

  • Ren J, Gersonde R, Esper O, Sancetta C (2014) Diatom distributions in northern North Pacific surface sediments and their relationship to modern environmental variables. Palaeogeogr Palaeoclimatol Palaeoecol 402:81–103. doi:10.1016/j.palaeo.2014.03.008

    Article  Google Scholar 

  • Rex RW, Goldberg ED (1958) Quartz contents of pelagic sediments of the Pacific Ocean 1. Tellus 10:153–159. doi:10.3402/tellusa.v10i1.9223

    Article  Google Scholar 

  • Roach A, Aagaard K, Pease C, Salo S, Weingartner T, Pavlov V, Kulakov M (1995) Direct measurements of transport and water properties through the Bering Strait. J Geophys Res Oceans 100:18443–18457. doi:10.1029/95JC01673

    Article  Google Scholar 

  • Rodionov SN, Bond NA, Overland JE (2007) The Aleutian Low, storm tracks, and winter climate variability in the Bering Sea. Deep-Sea Res II Top Stud Oceanogr 54:2560–2577. doi:10.1016/j.dsr2.2007.08.002

    Article  Google Scholar 

  • Schlitzer R (2002) Interactive analysis and visualization of geoscience data with Ocean Data View. Comput Geosci 28:1211–1218. doi:10.1016/S0098-3004(02)00040-7

    Article  Google Scholar 

  • Schumacher JD, Reed RK (1992) Characteristics of currents over the continental slope of the eastern Bering Sea. J Geophys Res 97:9423–9433. doi:10.1029/92JC00512

    Article  Google Scholar 

  • Serno S, Winckler G, Anderson RF, Hayes CT, McGee D, Machalett B, Ren H, Straub SM, Gersonde R, Haug GH (2014) Eolian dust input to the Subarctic North Pacific. Earth Planet Sci Lett 387:252–263. doi:10.1016/j.epsl.2013.11.008

    Article  Google Scholar 

  • Stabeno P, Reed R (1994) Circulation in the Bering Sea basin observed by satellite-tracked drifters: 1986-1993. J Phys Oceanogr 24:848–854. doi:10.1175/1520-0485(1994)024<0848:CITBSB>2.0.CO;2

    Article  Google Scholar 

  • Stabeno P, Kachel D, Kachel N, Sullivan M (2005) Observations from moorings in the Aleutian Passes: temperature, salinity and transport. Fish Oceanogr 14:39–54. doi:10.1111/j.1365-2419.2005.00362.x

    Article  Google Scholar 

  • Stabeno PJ, Bond NA, Salo SA (2007) On the recent warming of the southeastern Bering Sea shelf. Deep-Sea Res II Top Stud Oceanogr 54:2599–2618. doi:10.1016/j.dsr2.2007.08.023

    Article  Google Scholar 

  • Tegzes AD, Jansen E, Telford RJ (2015) Which is the better proxy for paleo‐current strength: sortable‐silt mean size (\( \overline{\mathrm{SS}} \)) or sortable‐silt mean grain diameter (dSS)? A case study from the Nordic Seas. Geochem Geophys Geosyst 16:3456–3471. doi:10.1002/2014GC005655

  • Toggweiler J (2009) Shifting westerlies. Science 323:1434–1435. doi:10.1126/science.1169823

    Article  Google Scholar 

  • Underwood MB, Hathon EG (1989) Provenance and dispersal of muds south of the Aleutian arc, north Pacific Ocean. Geo-Mar Lett 9:67–75. doi:10.1007/BF02430426

    Article  Google Scholar 

  • VanLaningham S, Pisias NG, Duncan RA, Clift PD (2009) Glacial–interglacial sediment transport to the Meiji Drift, northwest Pacific Ocean: evidence for timing of Beringian outwashing. Earth Planet Sci Lett 277:64–72. doi:10.1016/j.epsl.2008.09.033

    Article  Google Scholar 

  • Wang R, Zhang Y, Wünnemann B, Biskaborn BK, Yin H, Xia F, Zhou L, Diekmann B (2015) Linkages between Quaternary climate change and sedimentary processes in Hala Lake, northern Tibetan Plateau, China. J Asian Earth Sci 107:140–150. doi:10.1016/j.jseaes.2015.04.008

    Article  Google Scholar 

  • Weber ET, Owen RM, Dickens GR, Halliday AN, Jones CE, Rea DK (1996) Quantitative resolution of eolian continental crustal material and volcanic detritus in North Pacific surface sediment. Paleoceanography 11:115–127. doi:10.1029/95PA02720

    Article  Google Scholar 

  • Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13:841–847. doi:10.1109/34.85677

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a contribution to the INOPEX (Innovative North Pacific EXperiment) project funded by the Bundesministerium für Bildung und Forschung (German Ministry of Education and Research). Rong Wang (File No. 201206190109) was supported by the China Scholarship Council. M.B. Underwood from the University of Missouri is thanked for offering a part of surface clay mineral results. We thank the scientific and technical staff onboard ship. We are also grateful to Daniel Gorzawski and Dyke Scheidemann from AWI Potsdam for technical assistance. We acknowledge the constructive reviews of David J.W. Piper and Zhi Fei Liu on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Biskaborn, B.K., Ramisch, A. et al. Modern modes of provenance and dispersal of terrigenous sediments in the North Pacific and Bering Sea: implications and perspectives for palaeoenvironmental reconstructions. Geo-Mar Lett 36, 259–270 (2016). https://doi.org/10.1007/s00367-016-0445-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-016-0445-7

Keywords

Navigation